Year 1

Mastery Overview Summer

White Rose

Year 1

SOL Overview

As well as providing term by term overviews for the new National Curriculum, as a Maths Hub we are aiming to support primary schools by providing more detailed Schemes of Learning, which help teachers plan lessons on a day to day basis.

The following schemes provide exemplification for each of the objectives in our new term by term overviews, which are linked to the new National Curriculum. The schemes are broken down into fluency, reasoning and problem solving, which are the key aims of the curriculum. Each objective has with it examples of key questions, activities and resources that you can use in your classroom. These can be used in tandem with the mastery assessment materials that the NCETM have recently produced.

We hope you find them useful. If you have any comments about this document or have any suggestions please do get in touch.

Thank you for your continued support with all the work we are doing.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide an assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice
Part 2: Reasoning based questions
You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

The autumn and spring assessments are now available.

Year 1

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency.
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group.
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete - Pictorial - Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete - students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

Abstract - with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 1

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues.

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they do not appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Term by Term Objectives

Year 1

Year 1 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\frac{5}{5}$	Number: Place Value			Number: Addition and Subtraction				Number: Place Value		Number: Addition and Subtraction		
$\begin{aligned} & \text { 잉 } \\ & \text { ó } \end{aligned}$			Place Value				Number: Multiplication and Division		Number: Fractions			
$\begin{aligned} & \text { ¢ } \\ & \text { छ } \\ & \text { あ } \end{aligned}$	Number: Place Value			Number: Four Operations			Measurement: Money		Measurement: Weight and Volume			

Term by Term Objectives

Year Group	Y1		Term	Summer							
Week 1 W	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Place Value Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. Count, read and write numbers from 1-100 in numerals and words. Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than, most, least. Given a number, identify one more and one less.			Number: Four Operations Represent and use number bonds and related subtraction facts within 20. Add and subtract one digit and two digit numbers to 20 , including 0 . Read, write and interpret mathematical statements involving addition (+) subtraction (-) and equals (=) signs. Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems. Count in multiples of twos, fives and tens. Solve one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.			Measurement: Money Recognise and know the value of different denominations of coins and notes. Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems.		Measurement: Weight and Volume Compare, describe and solve practical problems for mass/weight [for example, heavy/light, heavier than, lighter than]; capacity and volume [for example, full/empty, more than, less than, half, half full, quarter] Measure and begin to record mass/weight, capacity and volume.			

Term by Term Objectives

Year 1

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
	Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number.	- Here is a hundred square. Count forwards from 42..... Count backwards from 80...... Count forwards from 30, when you get to 50, count back to 40 . - Here is a 100 base ten block. What number would come next? Use base 10 to help count forward over 100. When you reach 120, count back to 80.	- I am going to count on from the number 58 , will I say 56 ? Can you explain why? - I am going to count backwards from 30 , how many steps will it take me to reach 10 ? - Sarah is counting from 70 backwards to 65 . She says the numbers 70, 69, 68, 67, 65. Can you explain the mistake she has made?	- Can you work out what number I started counting from using the clues? Is there more than one option? I say 102 digit numbers and finish on the number 34 . I count backwards 13 numbers and finish on 90. I count backwards from a 2 digit number and say 7 numbers which have 7 digits altogether. - Sam starts counting at the number 50 . He says 6 odd numbers and 5 even numbers. What number could he finish on?

Term by Term Objectives

Year 1

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Term by Term Objectives

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 1

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org
Add and subtract one

- Use Base 10 to complete the number sentences.

$$
\begin{aligned}
& 5+12= \\
& 12-5= \\
& 7+\ldots=19 \\
& 13-\ldots=8
\end{aligned}
$$

- Use the ten frames to complete the number sentences.

- Fill in the missing numbers.

$$
\begin{aligned}
& \square+5=12+6 \\
& 7+11=20-\square \\
& 6+5=\square+11
\end{aligned}
$$

- Always, sometimes, never.

Two one digit odd numbers add up to make an even number.
$\operatorname{Eg} 3+5=8$

- Sam says
'When you add 0 to a number, the number doesn't change.'

Do you agree?
Use Base 10, a ten frame or a number line to help you explain.

- Here is a number puzzle. The numbers in the blue circles add together to make the number in the purple circle between them.
The numbers in the purple circles add together to make the number in the orange circle between them.

Can you fill in the purple and orange circles?

- Sita and Kim have 15 sweets between them.
Here are Kim's sweets.

How many sweets does Sita have?

	Read, write and interpret mathematical statements involving addition (+) subtraction (-) and equals (=) signs.	- Fill the boxes using + , - or = $\begin{aligned} & 6 \square 3 \square 9 \\ & 6 \square 3 \square 3 \end{aligned}$ - Look at the diagram and write a number sentence to describe it. - Hannah has 12 balloons. Six of them pop. How many balloons does Hannah have left? Write your answer as a full number sentence.	- Use < , > or = to fill the box. $\begin{aligned} & 15+2 \square 15-2 \\ & 19-5 \square 11+3 \\ & 17-4 \square 17-3 \\ & 2+16 \square 12+6 \end{aligned}$ - How many number sentences could you write to describe the number line below? - Jasmine is using a ten frame to find the answer to a question. What could the question be?	- Here are some number cards. 3 4 5 6 7 8 9 Use six of the number cards to fill the boxes below. You can only use each card once. \square $+$ \square $=$ \square $+$ \square $=$ \square $+$ \square Can you fill the boxes in more than one way? - Look at the picture and write addition or subtraction sentences. a) By size b) By shape

Term by Term Objectives

Year 1

	Count in multiples of twos, fives and tens.	- Draw the next three pictures for each pattern and write the numbers under each picture. 246 10 20 30	- Convince me that the number 10 can be in more than one sequence of multiples. - Hassan is counting in 5's. He says 'I will never say a number that ends in 1^{\prime} Is he correct? Explain your answer. - Always, sometimes, never Multiples of 5 are odd numbers. Multiples of 2 are even numbers.	- Fill in the missing numbers. 2 4 20 \square \square - Fill in the sentences below. One has been done for you. $\Delta=5$ \qquad $\wedge \wedge \wedge$

Saps

Term by Term Objectives

Year 1

Term by Term Objectives

Year 1

Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems.	- Jenny gives 10p to her brother, she has 7 p left. How much money did she have to start with? Fill in your answer in the number sentence below. \square - 10p $=$ - Here are some items. 8p Sam buys one train and one yoyo. How much does he spend altogether? - Tom buys one teddy. How much change will he get from a ten pence coin? 7p	- Convince me that two 5 p coins is worth the same as five $2 p$ coins. - Ella has 15 p. Which two items could she buy? 8p 5p $7 p$ Ella says 'I can buy three toys with 15p.' Do you agree? Convince me.	- Maryam buys these two items for 16p. She pays with this coin. How much change does she get? Which coins might she be given? - George has four coins. He has $12 p$ altogether. Which coins does he have? - Using two different coins each time, how many different totals can you make?

© Trinity Academy Halifax 2016
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 1

	Measure and begin to record mass/weight, capacity and volume.	- Choose four objects from around the classroom. Which is heaviest? Which is the lightest? What could you use to find out? Can you find two objects that weigh the same? - Choose five different containers. How could you find out which container holds the most water? Fill up the containers using a cup. How many cups of water do you need to use to fill each container? - Follow the recipe below to make pancakes. 1 large free-range egg 1 cup of self-raising flour 1 cup of milk Use the same cup for the flour and the milk. How could we make more pancakes? How could we make less?	- Look at the balance scales. How many cubes does the teddy bear weigh the same as? - Look at the balance scales. Which is heavier, the doll or the car? If you added another car to the scales, what might happen?	- Look at the balance scales below. Which of the statements is true? - The train is heavier than the car. - The car is heavier than the train. - The train is lighter than the car. - The car is lighter than the train. - The car and the train weight the same amount.

