Year 4

Mastery Overview Spring

Year 4

SOL Overview

As well as providing term by term overviews for the new National Curriculum, as a Maths Hub we are aiming to support primary schools by providing more detailed Schemes of Learning, which help teachers plan lessons on a day to day basis.

The following schemes provide exemplification for each of the objectives in our new term by term overviews, which are linked to the new National Curriculum. The schemes are broken down into fluency, reasoning and problem solving, which are the key aims of the curriculum. Each objective has with it examples of key questions, activities and resources that you can use in your classroom. These can be used in tandem with the mastery assessment materials that the NCETM have recently produced.

We hope you find them useful. If you have any comments about this document or have any ideas please do get in touch.

Thank you for your continued support with all the work we are doing.

The White Rose Maths Hub Team

Assessment

Alongside these curriculum overviews, our aim is also to provide an assessment for each term's plan. Each assessment will be made up of two parts:

Part 1: Fluency based arithmetic practice
Part 2: Reasoning based questions
You can use these assessments to determine gaps in your students' knowledge and use them to plan support and intervention strategies.

The autumn term assessments are now available. we aim to have the spring term assessments completed by February half term.

White Rose

Year 4

Teaching for Mastery

These overviews are designed to support a mastery approach to teaching and learning and have been designed to support the aims and objectives of the new National Curriculum.

The overviews:

- have number at their heart. A large proportion of time is spent reinforcing number to build competency.
- ensure teachers stay in the required key stage and support the ideal of depth before breadth.
- ensure students have the opportunity to stay together as they work through the schemes as a whole group.
- provide plenty of time to build reasoning and problem solving elements into the curriculum.

Concrete - Pictorial - Abstract

As a hub we believe that all students, when introduced to a key new concept, should have the opportunity to build competency in this topic by taking this approach.

Concrete - students should have the opportunity to use concrete objects and manipulatives to help them understand what they are doing.

Pictorial - students should then build on this concrete approach by using pictorial representations. These representations can then be used to reason and solve problems.

Abstract - with the foundations firmly laid, students should be able to move to an abstract approach using numbers and key concepts with confidence.

Year 4

Frequently Asked Questions

We have bought one of the new Singapore textbooks. Can we use these curriculum plans?

Many schools are starting to make use of a mastery textbook used in Singapore and China, the schemes have been designed to work alongside these textbooks. There are some variations in sequencing, but this should not cause a large number of issues.

If we spend so much time on number work, how can we cover the rest of the curriculum?

Students who have an excellent grasp of number make better mathematicians. Spending longer on mastering key topics will build a student's confidence and help secure understanding. This should mean that less time will need to be spent on other topics.

In addition schools that have been using these schemes already have used other subjects and topic time to teach and consolidate other areas of the mathematics curriculum.

My students have completed the assessment but they have not done well.

This is your call as a school, however our recommendation is that you would spend some time with the whole group focussing on the areas of the curriculum that they do not appear to have grasped. If a couple of students have done well then these could be given rich tasks and deeper problems to build an even deeper understanding.

Can we really move straight to this curriculum plan if our students already have so many gaps in knowledge?

The simple answer is yes. You might have to pick the correct starting point for your groups. This might not be in the relevant year group and you may have to do some consolidation work before.

These schemes work incredibly well if they are introduced from Year 1 and continued into Year 2, then into Year 3 and so on.

Year 4

NCETM Mastery Booklets

In addition to the schemes attached the NCETM have developed a fantastic series of problems, tasks and activities that can be used to support 'Teaching for Mastery'. They have been written by experts in mathematics.

It will also give you a detailed idea of what it means to take a mastery approach across your school.

Information can be found on the link below.
https://www.ncetm.org.uk/resources/46689

WRMH Primary Network

over the past 12 months we have been working with a company called MyFlo to develop a free online platform where teachers from across our region (and wider) can share their own resources and lesson plans based on this new curriculum. All our overviews, schemes and assessment materials will be made available on the MyFlo network.

Everyone Can Succeed

As a Maths Hub we believe that all students can succeed in mathematics. We do not believe that there are individuals who can do maths and those that cannot. A positive teacher mindset and strong subject knowledge are key to student success in mathematics.

More Information

If you would like more information on 'Teaching for Mastery' you can contact the White Rose Maths Hub at mathshub@trinityacademyhalifax.org

We are offering courses on:

- Bar Modelling
- Teaching for Mastery
- Year group subject specialism intensive courses become a Maths expert.

Our monthly newsletter also contains the latest initiatives we are involved with. We are looking to improve maths across our area and on a wider scale by working with other Maths Hubs across the country.

Term by Term Objectives

Year 4

Year 4 Overview

[^0]mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 4

Year Group		Y4	Term	Spring							
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Add and subtract fractions with the same denominator.				Time Convert between different units of measure, e.g. hour to minute. Read, write \& convert time between analogue and digital 12 and 24 hour clocks. Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	Compare numbers with the same number of decimal places up to two decimal places.				Measureme Solve simple and money p involving fra decimals to decimal plac Estimate, co and calculate measures, in money in po pence.	Money measure blems ons and pare different uding ds and	Time at the beginning or end of the term for consolidation, gap filling, seasonal activities, assessments, etc.

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recognise and show, using diagrams, families of common equivalent fractions.	- Complete the statements: $\overline{8}=\frac{1}{4}$ \square ${ }_{3}=\frac{4}{4}$ - $1 / 2$ is equivalent to 2 quarters. Write and draw three more fractions that are equivalent to a half. - Draw diagrams to show fractions that are equivalent to $\frac{4}{8}$	- A pizza is cut into 8 slices. Zara says, "If I take half of the pizza, and my brother takes 4 slices, we will both have the same amount." Is she correct? Convince me by using a diagram. - Look at the three pictures. What's the same and what's different? - Two paper strips are ripped. Which paper strip was originally the longest? Explain your answer. \square	- Harry says, " $\frac{3}{4}$ is always the same as $\frac{6}{8}$ " Jenny says, " $\frac{3}{4}$ is equivalent to $\frac{6}{8}$ but isn't always the same amount." Use diagrams to show and prove your answer. - Use the digit cards to fill in the boxes below. - Print the square below several times on a sheet. Children investigate the different ways they can show $\frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}$

Term by Term Objectives

Year 4

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
$\begin{aligned} & 0 \\ & \frac{\ddots}{O} \\ & \frac{0}{\square} \\ & \frac{0}{4} \end{aligned}$	Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.	- Find: $\frac{2}{5} \text { of } 45 \quad \frac{3}{8} \text { of } 24$ - Emily buys a box of 24 chocolates. She eats $\frac{1}{4}$ of the chocolates and her Mum eats $\frac{1}{3}$. How many chocolates are left? - George and Grace have ordered lemonade. Grace has a small lemonade which is 250 ml . George has a large lemonade which is $\frac{4}{10}$ more than a small. How many ml does George have? - If George only drinks half of his lemonade and Grace drinks three quarters of her lemonade, who drinks the most? Show your working.	- The school kitchen needs to buy potatoes for lunch. A large bag has 200 potatoes and a medium bag has $\frac{3}{5}$ of a large bag. The school cook says, "I need 150 potatoes so I will have to buy a large bag." Is she correct? Explain your reasoning. - True or False To find $\frac{3}{8}$ of a number, divide by 3 and multiply by 8. Convince me. - The two squares below are $\frac{2}{6}$ of a rectangle. Can you draw the rest of the rectangle? Can you do it more than one way?	- These three squares are $\frac{1}{4}$ of a whole shape. How many different shapes can you draw that could be the complete shape? - Jenny has 42 stickers. She gives $\frac{3}{7}$ of her stickers to Paul and $\frac{2}{6}$ of her stickers to Beth. How many stickers do they each have? - Work out the answer to each question to make it through the maze.

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Add and subtract fractions with the same denominator.	- Calculate: Use diagrams and bar modelling to solve the problems below. $\begin{array}{ll} \frac{3}{8}+\frac{2}{8}= & \frac{1}{6}+\frac{2}{6}= \\ \frac{7}{8}-\frac{2}{8}= & \frac{5}{7}-\frac{2}{7}= \end{array}$ - Sarah eats $\frac{3}{8}$ of a bunch of grapes; Tom eats $\frac{2}{8}$ of a bunch of grapes. What fraction of the grapes have they eaten altogether? - Fill in the box: $\begin{aligned} & \frac{5}{8}+\square=\frac{7}{8} \\ & \frac{5}{6}-\square=\frac{1}{6} \end{aligned}$	- The answer is $\frac{4}{9}$; what is the question? - True or False $\begin{aligned} & \frac{5}{12}+\frac{3}{12}=\frac{8}{12} \\ & \frac{5}{12}+\frac{3}{12}=\frac{8}{24} \\ & \frac{5}{12}+\frac{3}{12}=\frac{4}{6} \end{aligned}$ Explain your reasoning. - Describe the pattern: $\begin{aligned} & \frac{7}{10}-\frac{1}{10}=\frac{6}{10} \\ & \frac{6}{10}-\frac{1}{10}=\frac{5}{10} \end{aligned}$ Can you continue the pattern?	- Caroline chooses two fractions and subtracts the smaller one from the bigger one. Her answer was $\frac{1}{6}$. What fractions could Caroline have chosen? How many ways can you find to do it? - Find three ways to complete each calculation. \square $+\frac{\square}{\square}=\frac{8}{9}$ - Dan has 2 pieces of rope. One is $\frac{2}{8}$ of the whole rope and one is $\frac{2}{4}$. Dan adds $\frac{4}{8}$ to the first rope and $\frac{1}{4}$ to the second rope. Which rope is longer? Do you notice anything about the lengths of the ropes? $\frac{2}{8}$ $\frac{2}{4}$

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Convert between different units of measure e.g. hour to minute.	- Fill in the gaps: $\begin{aligned} & 1 \text { hour }=\text { minutes } \\ & 1 \text { minute }=\text { seconds } \\ & 2 \text { hours }=\text { minutes } \\ & \text { _ minutes }=\overline{180} \text { seconds } \end{aligned}$ - Katie goes swimming for 1 hour and 42 minutes. How many minutes was she swimming for? - Kelsey is 7 and a half years old. How many months old is she?	- James says, " To convert hours to minutes, I multiply the number of hours by 60 " Is he correct? Can you explain why? - Mark is doing a sponsored silence. Mark says, "If I am silent for five hours at 10 p per minute I will raise 50 pounds." Is he correct? Prove it. - True or False 4 minutes is shorter than 250 seconds. Show your working.	- Five friends are running a race. Their times are below. Can you work out in what order they finished? Emily: 1 minute 32 seconds Simon: 95 seconds Lucy: 1 minute 28 seconds Tony: 89 seconds Carrie: 100 seconds What was the difference between the fastest time and the slowest time? - Match the cards together to make a loop where correct answers are next to each other.

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Read, write \& convert time between analogue and digital 12 and 24 hour clocks.	- Read and write the following times in a) 24 hour clock b) 12 hour clock c) analogue e.g. Quarter past 2 in the afternoon: a) $14: 15$ b) $2: 15 \mathrm{pm}$ c) - Work out the problems and then draw the hands in the correct position on the analogue clocks. Paul sets off to London at 11:05am, the journey took 3 hours and 50 minutes. Draw the time he arrived on the clock. Clare finishes school at 15:25, she had her tea 1 hour and 40 minutes later. Draw the time she ate tea on the clock.	- Sam says ' To change any time after midday from 12 hour to 24 hour clock just add 12 to the minutes'. Is he correct? Can you explain his thinking? - Laura is writing the time $21: 35$ on the analogue clock below. - Can you make her time even more accurate? Explain your reasoning. - Three children are meeting in the park. Sam says 'We are meeting at 14:10. Laura says 'We are meeting at ten to two. Tom says 'We are meeting at 2:10pm' - Will all the children meet at the same time? Convince me.	- Can you match the analogue clocks to the digital time even though one of the hands is missing? 14:45 8:15 20:55 - On a 24 hour digital clock, over 24 hours, how many times does the number 4 appear? - Does the number 4 appear more or less on a 12 hour digital clock or a 24 hour digital clock? - Can you match the time dominoes together so that the adjoining times are the same?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	- Match the times; fill in the missing times in the empty boxes. - A full day at school is 8 hours and 35 minutes. How long is this in minutes? - Sarah is 7 years and 2 months old. Harry is 85 months old. Who is the oldest? Show your working.	- Hannah is travelling from Halifax to London by car; it takes 4 hours 11 minutes. Sam is travelling from Halifax to London by train; it takes 214 minutes. Who will have the quicker journey? Explain your answer. - Phil says, "6420 seconds is longer than 107 minutes." Do you agree? Explain your reasoning. - James says, "In a year with 365 days, there is one month that has an exact number of weeks." Which month has an exact number of weeks? Does it have an exact number every year?	- Tara is going to Blackpool for a day. She has 4 hours 30 minutes there and can choose 3 activities to do while she is there. Which activities could she choose to do? How much time would they fill? How many combinations of activities can you find? - It is the $6^{\text {th }}$ of November. Can you work out when Jan, Tim and Saira's birthdays are using the clues below? Jan: "It is my birthday in 3 weeks and 2 davs." Tim: "It is my birthday in 96 hours." Saira: "It was my birthday 2 weeks and 72 hours ago."

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Year 4

(C) Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$	- Fill in the table: - Match the fraction to the correct decimal. - Write the fraction that matches to each decimal. $\begin{aligned} & 0.25= \\ & 0.5= \\ & 0.75= \end{aligned}$	- Using place value counters, show that 1 divided into 2 equal parts is 0.5 . Can you show that 1 divided into 4 equal parts is the same as 0.25 ? - Explain how you know $0.5=\frac{1}{2}$ - Harry has written the decimal equivalents to a half and a quarter. Can you explain to him what he has done wrong? What could you use to show him? Harry: $\frac{1}{2}=1.2$ $\frac{1}{4}=1.4$	- Use the number cards $0-5$ below to complete the number sentence. Which number did you have left over? - Complete the number sentence below using the number cards $0-5$: Which number did you have left over? Was it the same number as before? Which extra number would you need to make a number sentence that used your left over number?

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 4

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
$\stackrel{\oplus}{\square}$	Round decimals with one	- Round the following numbers to the nearest whole number: $3.2=$ $4.7=$ $25.5=$ - Write all the decimals with one decimal place that round to 32 to the nearest whole number. - Sort the numbers below into the table rounding each of them to the nearest whole number.	- Which decimals below round to 4 when rounded to the nearest whole number? $4.2,3.8,4.5,3.5,4.7$ Explain your reasoning. - Two numbers with one decimal place both round to 23 . The numbers add up to 46 . What could the two numbers be? Explain your thinking.	- Roll two dice. Using the numbers make two numbers with one decimal place. Round the numbers to the nearest whole number. How many combinations of the two dice can you find that would round to the same whole number? - Using the digit cards below, how many numbers can you make with one decimal place that would round to 45 . You can only
$\begin{aligned} & \overline{0} \\ & 0 \\ & \hline 1 \end{aligned}$	whole number.	23.1 23.2 24.4 23.5 23.4 24.3 23.9 22.8 22.5Rounds to 23 Rounds to 24 	place to the nearest whole number.	Can you make more or less numbers that round to 46? If you were given this number card: How many numbers could you make that round to 47 ?

Term by Term Objectives

Year 4

© Trinity Academy Halifax 2015
mathshub@trinityacademyhalifax.org

White Rose

Year 4

National Curriculum Statement

Solve simple measure and money problems involving fractions and decimals to two decimal places.

- Emma has five pounds. She spends a quarter of her money How much does she have left?

- In the sale I bought some clothes for half price.
Jumper £14
Scarf £7
Hat £2.50
T-shirt £6.50
How much would the clothes have been full price?
How much did I spend altogether? How much did I save?

All students

Reasoning

- A class is planning a trip to a theme park. Adult tickets cost $£ 8$. Children's tickets cost $£ 4$. How many tickets could they buy for $£ 100$. How many different ways can you find to do this?
- Hazel buys a teddy bear for £6.00, a board game for £4.00, a cd for $£ 5.50$ and a box of chocolates for $£ 2.50$. She has some discount vouchers. She can either get $£ 10.00$ off or half price on her items. Which voucher would save her more? Explain your thinking.
- Yasmin is choosing a new mobile phone. One phone costs $£ 5.50$ per month. The other costs $£ 65.50$ for a year. Which is the better deal over a year?

Problem Solving

- Kim bought a chocolate bar and a drink. The cost of them both together is in one of the boxes below.

$£ 1.85$	75 p	$£ 1.56$
$£ 1.74$	$£ 2.25$	$£ 1.00$
$£ 1.80$	$80 p$	$£ 2.10$
$£ 1.44$	$£ 3.06$	$£ 1.50$
$£ 1.20$	$£ 1.25$	$£ 1.60$
$£ 1.45$	$90 p$	$£ 1.27$

Using these five clues can you work out which price in the boxes is correct?

1. You need more than three coins to make this amount.
2. There would be change when using the most valuable coin to buy them.
3. The chocolate bar cost more than 50p
4. You could pay without using any copper coins
5. The chocolate bar cost exactly half the amount of the drink.

Year 4

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Estimate, compare and calculate different measures, including money in pounds and pence.	- Order the following amounts placing < or > between them. £25.62, 2657p, 2567p. - Robbie buys a toy car for 99p, a yoyo for $£ 1.05$, three sweets for 30p each and a chocolate bar for 47p. Does he have enough money to pay with a £5 note? - Martina buys a jacket for 2165p and a t shirt for £9.99. Hamid buys a coat for $£ 32.00$. Who spends the most?	- Which would you rather have, three quarters of £2.40 or one quarter of $£ 6$? Explain your reasoning. - Which would you rather have, five 50p coins or 12 20p coins? Explain why. - 1 chocolate bar costs the same as 4 sweets. 4 sweets cost the same as 2 stickers. 1 sticker costs 30p. How much does the chocolate bar cost?	- Choose a route through the money maze. You can only go on each square once. Can you find the route that makes the highest amount of money? Which route makes the lowest amount of money? - Lola and Jamal are sharing some coins. Lola gets half the amount of Jamal. Which coins could they each get?

© Trinity Academy Halifax 2015 mathshub@trinityacademyhalifax.org

Term by Term Objectives

Year 4

[^0]: © Trinity Academy Halifax 2015

